Chris Bail
Duke University
website: https://www.chrisbail.net
github: https://github.com/cbail
Twitter: https://www.twitter.com/chris_bail
Navigate to:
install.packages("rtweet")
app_name<-"YOURAPPNAMEHERE"
consumer_key<-"YOURKEYHERE"
consumer_secret<-"YOURSECRETHERE"
access_token<-"YOURACCESSTOKENHERE"
access_token_secret<-"YOURACCESSTOKENSECRETHERE"
library(rtweet)
create_token(app=app_name, consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=access_token,
access_token_secret=access_token_secret,
set_renv = TRUE)
korea_tweets<-search_tweets("#Korea", n=3000, include_rts = FALSE)
names(korea_tweets)
head(korea_tweets$text)
ts_plot(korea_tweets, "3 hours") +
ggplot2::theme_minimal() +
ggplot2::theme(plot.title = ggplot2::element_text(face = "bold")) +
ggplot2::labs(
x = NULL, y = NULL,
title = "Frequency of Tweets about Korea from the Past Day",
subtitle = "Twitter status (tweet) counts aggregated using three-hour intervals",
caption = "\nSource: Data collected from Twitter's REST API via rtweet"
)
nk_tweets <- search_tweets("korea",
"lang:en", geocode = lookup_coords("usa"),
n = 1000, type="recent", include_rts=FALSE
)
geocoded <- lat_lng(nk_tweets)
par(mar = c(0, 0, 0, 0))
maps::map("state", lwd = .25)
with(geocoded, points(lng, lat, pch = 20, cex = .75, col = rgb(0, .3, .7, .75)))
sanders_tweets <- get_timelines(c("sensanders"), n = 5)
head(sanders_tweets$text)
sanders_twitter_profile <- lookup_users("sensanders")
sanders_twitter_profile$description
sanders_twitter_profile$location
sanders_twitter_profile$followers_count
sanders_favorites<-get_favorites("sensanders", n=5)
sanders_favorites$text
sanders_follows<-get_followers("sensanders")
rate_limits<-rate_limit()
head(rate_limits[,1:4])
get_trends("New York")
post_tweet("I love APIs")
Note: this is a very useful function if you are building a bot
#load list of twitter handles for elected officials
elected_officials<-read.csv("https://cbail.github.io/Elected_Officials_Twitter_Handles.csv",stringsAsFactors = FALSE)
head(elected_officials)
name screen_name
1 Sen Luther Strange SenatorStrange
2 Rep. Mike Johnson RepMikeJohnson
3 Ted Budd RepTedBudd
4 Adriano Espaillat RepEspaillat
5 Rep. Blunt Rochester RepBRochester
6 Nanette D. Barragán RepBarragan
#create empty container to store tweets for each elected official
elected_official_tweets<-as.data.frame(NULL)
for(i in 1:nrow(elected_officials)){
#pull tweets
tweets<-get_timeline(elected_officials$screen_name[i], n=100)
#populate dataframe
elected_official_tweets<-rbind(elected_official_tweets, tweets)
#pause for one second to further prevent rate limiting
Sys.sleep(1)
#print number/iteration for debugging/monitoring progress
print(i)
}
Here are a few: RgoogleMaps
, Rfacebook
, rOpenSci
(this one combines many different APIs e.g. the Internet Archive), WDI
,rOpenGov
,rtimes
Many more are available but not yet on CRAN (install from github or using devtools)
For example, visualization (plotly
)