Dictionary-Based Analysis

Chris Bail
Duke University

Word Counting

Word Counting w/Trump Tweets

 

load(url("https://cbail.github.io/Trump_Tweets.Rdata"))
library(tidytext)
library(dplyr)
tidy_trump_tweets<- trumptweets %>%
    select(created_at,text) %>%
    unnest_tokens("word", text)

Without Stop words

data("stop_words")
trump_tweet_top_words<-
   tidy_trump_tweets %>%
      anti_join(stop_words) %>%
        count(word) %>%
        arrange(desc(n))
trump_tweet_top_words<-
  trump_tweet_top_words[-grep("https|t.co|amp|rt",
                              trump_tweet_top_words$word),]
top_20<-trump_tweet_top_words[1:20,]

Plot

library(ggplot2)
ggplot(top_20, aes(x=word, y=n, fill=word))+
  geom_bar(stat="identity")+
  theme_minimal()+
  theme(axis.text.x = element_text(angle = 90, hjust = 1))+
  ylab("Number of Times Word Appears in Trump's Tweets")+
  xlab("")+
  guides(fill=FALSE)

Plot

  plot of chunk unnamed-chunk-4

Term Frequency Inverse Document Frequency

Term Frequency Inverse Document Frequency

tf-idf

tidy_trump_tfidf<- trumptweets %>%
    select(created_at,text) %>%
      unnest_tokens("word", text) %>%
        anti_join(stop_words) %>%
           count(word, created_at) %>%
              bind_tf_idf(word, created_at, n)

tf-idf

top_tfidf<-tidy_trump_tfidf %>%
  arrange(desc(tf_idf))

top_tfidf$word[1]
[1] "standforouranthem"
economic_dictionary<-c("economy","unemployment","trade","tariffs")

Applying the dictionary

library(stringr)
economic_tweets<-trumptweets[str_detect(trumptweets$text, economic_dictionary),]
head(economic_tweets$text, 2)
[1] "Great talk with my friend President Mauricio Macri of Argentina this week. He is doing such a good job for Argentina. I support his vision for transforming his country’s economy and unleashing its potential!"                                                         
[2] "The Washington Post and CNN have typically written false stories about our trade negotiations with China. Nothing has happened with ZTE except as it pertains to the larger trade deal. Our country has been losing hundreds of billions of dollars a year with China..."

Sentiment Analysis

Sentiment Analysis

Sentiment Analysis

head(get_sentiments("afinn"))
# A tibble: 6 x 2
  word       value
  <chr>      <dbl>
1 abandon       -2
2 abandoned     -2
3 abandons      -2
4 abducted      -2
5 abduction     -2
6 abductions    -2

Sentiment Analysis

trump_tweet_sentiment <- tidy_trump_tweets %>%
  inner_join(get_sentiments("bing")) %>%
    count(created_at, sentiment) 

head(trump_tweet_sentiment)
# A tibble: 6 x 3
  created_at          sentiment     n
  <dttm>              <chr>     <int>
1 2017-02-05 22:49:42 positive      2
2 2017-02-06 03:36:54 positive      4
3 2017-02-06 12:01:53 negative      3
4 2017-02-06 12:01:53 positive      1
5 2017-02-06 12:07:55 negative      2
6 2017-02-06 16:32:24 negative      3

Create Date Object

tidy_trump_tweets$date<-as.Date(tidy_trump_tweets$created_at, 
                                          format="%Y-%m-%d %x")

Aggregate Negative Sentiment by Day

trump_sentiment_plot <-
  tidy_trump_tweets %>%
    inner_join(get_sentiments("bing")) %>% 
      filter(sentiment=="negative") %>%
          count(date, sentiment)

Plot

library(ggplot2)

ggplot(trump_sentiment_plot, aes(x=date, y=n))+
  geom_line(color="red")+
    theme_minimal()+
      ylab("Frequency of Negative Words in Trump's Tweets")+
        xlab("Date")

Plot

plot of chunk unnamed-chunk-14

Compare with Approval Rating

trump_approval<-read.csv("https://projects.fivethirtyeight.com/trump-approval-data/approval_topline.csv")

trump_approval$date<-as.Date(trump_approval$modeldate, format="%m/%d/%Y")

approval_plot<-
  trump_approval %>%
    filter(subgroup=="Adults") %>%
      filter(date>min(trump_sentiment_plot$date)) %>% 
          group_by(date) %>%
              summarise(approval=mean(approve_estimate))

Plot

#plot
ggplot(approval_plot, aes(x=date, y=approval))+
  geom_line(group=1)+
    theme_minimal()+
      ylab("% of American Adults who Approve of Trump")+
        xlab("Date")

Plot

plot of chunk unnamed-chunk-17

Linguistic Inquiry Word Count (LIWC)

Linguistic Inquiry Word Count (LIWC)

So many Sentiments...

When should One Use Dictionary-Based Analysis?